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Introduction 

This paper is an attempt to give a new characterization of formal spaces, in terms 
of their cell-structure. The formal spaces, as introduced by Sullivan [7], are defined 
by the property that their rational cohomology algebra determines the rational 
homotopy type. A formal space is a most appropriate one for doing rational 
homotopy computations, but the problem of deciding the formality is known to be 
sufficiently complicated. 

We propose a characterization of the formality of a complex, in terms of the 
attaching maps, in Theorem 3.4, which is the main result of Section 3. It 
complements other known purely algebraic characterizations of formality (see [2] 
and [5]). 

The results in Section 3 depend on the technique of constructing d.g.a, minimal 
models which contain information about a given cell decomposition (traditionally, 
the construction follows the pattern of the Postnikov decomposition - see Section 
1). This technique is developed in Section 2, whose main result is Proposition 2.3. 

In Section 4, we introduce a class of rational homotopy types, which admit cell 
decompositions of a simple kind (see Definitions 4.1, 4.4) and give a characteriza- 
tion of this property, in Theorem 4.5. In Corollary 4.7, we indicate a class of 
examples of such spaces, whose formality will be investigated in another paper, in 
the context of rational Poincar~ duality spaces. 

1. Preliminaries 

We recall some of the main results of Sullivan [7] (see also [1], [2], [6]). 
Concerning notations and terminology, we will follow those in [21, with minor 
changes. 
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A minimal differential graded commutative algebra (d.g.a.) ~ is required to be 
freely generated as a graded commutative algebra (g.a.), with generators, say 
V= (~p>~ V p, that is ~g =A(V)  (see also [2, §4]) with a decomposable differential, 
which we will write 

d( V) C D ~  = J l  + . ~¢L + 

(compare with [2, §1]). Sullivan shows that any (simply connected) d.g.a, d has a 
minimal model, i.e., a minimal algebra ~g, together with a d.g.a, map inducing 
isomorphism in cohomology, ~o : ~--*W, unique up to isomorphism (see [2, Theorem 
1.1]). It will be important for us to have a precise description of the inductive con- 
struction of the model, which is: given any ( n -  1)-stage model, Qn-1 : ~gn-1 -"~6ff, 
an n-stage model is obtained by an elementary extension 

where 
.tgn = ../ln_ l ®d An( V ' ) ,  

V" = C"@)K n, Cn = coker Hn~on _ 1, 

d]C"=O,  

and, passing to cohomology [d ]K n] =inclusion (see Example 4.9). 
At this point, we introduce the following: 

K n = Ker H n + 1 ~ n  - 1, 

(1.1) 

1.2. Definition. A minimal ~/¢ is said to be in normal form if 

Ker[d I V] = Ker(d I V). 

(The right hand side will also be denoted by Cz¢). This assumption is made in order 
to avoid unnecessary repetitions in the d.g.a, structure, as in 

.~ =A2(x ) (~A3(y )QAs ( z  ) with dx=O, d y = x  2, d z = x  3, 

which can be put in the normal form 

J L ' = A 2 ( x ' ) ® A 3 ( Y ' ) ® A s ( z ' )  with dx'=O, d y ' = x  '2, dz'=O. 

Actually, the situation is general: the models constructed by the algorithm (1.1) will 
always be in normal form which will be for us the prefered one, within its isomor- 
phism class. With the normal form hypothesis, one can easily see that the following 
useful relations hold: 

H P J (  = H P~/L p = C P (~) H P'~ p - 1- (1.3) 

Sullivan also introduces a notion of homotopy in the d.g.a, category, and then 
shows how to construct the model of a d.g.a, morphism f :  ~¢--*~¢'; namely, given 
models ~: ~g--*z¢, 0 ' :  ~'--*~¢', there exists a (unique up to homotopy) model for 
f,  f :  ~g--*~', which satisfies f o = o ' f  [2, Corollary 1.5]. We make the observation 
that it is not hard to see that the existence and uniqueness assertions also hold for 
p-stage models, which will be denoted by Op : ~gp-*Jg, and fp : ~p-%gp.  
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The geometric meaning of the minimal model theory is revealed by the Sullivan- 
Whitney-Thom construction of the de Rham d.g.a. Cx of a space X, which gives 
a functorial link between the (homotopy) topological and algebraic categories, via 
the minimal model construction: X ~ C l x  (model of ¢x), f ~ f  (model of ¢f) (see 

[2, §21). 
Finally Sullivan shows that the minimal model ~¢x uniquely determines the 

rational homotopy type of X, i.e. the homotopy type of the localization Xo (see 
[6, 1.4]). 

This fact is essentially proved by showing that the structure of ~ x  exactly 
mirrors the Postnikov decomposition of X0 [2, §3]. When trying to construct 
models which reflect the cell structure of a finite complex X, we begin by noting that 
dimQ H ' X <  co, and then try to exploit this simple observation. If ~¢ is a d.g.a., 
the notation c-dim ~¢_ n will mean that HP~= 0 for p > n. 

1.4. Definition. Given an ( n -  l)-stage minimal ~ _  l and a Q-vector space C, the 
canonical extension of ~n-1 by C, with c-dim < n will be the minimal algebra ~ ,  
constructed by the following sequence of elementary extensions: 

~n= ~n_I(~dAn(C)(~An(Hn+I~n_I) with dlC=0, [dlHn+l~n_ll=id, 

~p=~p_l®dAp(Hp+l~Ctp_l) with [d]=id,  for p>n.  

Our first preliminary remark is given by the following lemma and is a direct con- 
sequence of the construction (1.1): 

1.5. Lemma. I f  c-dim ~ < n, then ~¢ is isomorphic to a canonical extension o f  
~ -  1 with c-dim < n. 

When c-dim ~ '  < oo, not only ~¢t is determined by a finite-stage subalgebra, but 
the formality of ~ can also be decided at the finite-stage level. Sullivan introduced 
the notion of formal minimal algebra ~ be requiring the existence of a d.g.a, map 
Q : I r  ~H*~¢, inducing the identity in cohomology (see [2, §4]). It is easy to see what 
becomes of this condition when the c-finiteness hypothesis is added, namely: 

1.6. Lemma. Suppose c-dim ~¢L <<_ n. Then ~ is formal  i f f  there exists Qn- 1 : " ~ n  - 1 

H*~C[n- l, such that HPQn_ 1 = id for  p < n. 

The following formulation of a well-known first obstruction to formality will also 
be useful: 

1.7. Definition. Let ~//be a minimal algebra in normal form. We will say that H*Jt  
is spherically generated if the cohomology classes [C,~] generate H ' J /  as an 
algebra. As usual, the definition may be extended to arbitrary d.g.a.'s and spaces, 
using minimal models in normal form (for the geometric meaning and for another 
interpretation, see [5, §81). 



174 S. Papadima 

1.8. Lemma. Let ~ be minimal in normal form. I f  ~g is formal, then H%g is 
spherically generated. 

The statement is to be compared with [5, Theorem 8.12], and the proof is achieved 
with an argument like that in [2, Theorem 4.1]. We point out that the hypothesis 
of normal form is necessary in this formulation, as shown by the example already 
used: 

= AE(X)(~A3(Y)(~A5(z), 

where the class [z-xy]  ~ Hs~g cannot be expressed as a polinomial in [x]. 

2. The minimal model of a cellular decomposition 

We begin by describing the construction of the model of a space X, obtained from 
a space A by attaching (n + 1)-cells, in terms of the model of A and of the models 
of the attaching maps. 

Let A be a space, cohomologically simply connected (i.e., Hi(A;  Q ) = 0 )  and 
whose rational homology is of finite type. Let us denote by j : A ~ X ,  the result of 
attaching (n + 1)-cells, with a finite number of attaching maps { f ~ : S n ~ A } .  

We choose the following initial data for our construction: n-stage models 

yn : Yn"~ ~S ~, an : ~Cn'* ~A, and f x, n : ~cn~ J n. 
The construction goes as follows: we denote by L~ the linear map 

~n/2, n 
~' 'rl~/./ ) ~'~ n ~,Qgr/' 

we write 

~'n = ~n-l®dA An(Wn),  

thus identifying Lx with an element in the Q-dual W n*, and we denote by V n 
the subspace defined by V n = ~ z  KerLx. We then define a sub d.g.a, of tin, 
n-minimal, by 

5rn=dn_l(~axAn(Vn), with dx=dAlv  .. (2.1) 

2.2. Lemma. The inclusion i: Y n ~ n  represents an n-stage model o f  the map j. 

Proof. We first extend the given n-stage models to minimal models 5e, ~', and fa. 
The rational cohomology properties of j assure the existence of a d.g.a, map 
~°n - 1 : f i n -  l - '~ ~ X ,  with the property ~j o ~0 n- 1 = an- l (compare [2, Theorem 1.2]), 
which we then extend to a model: ~o': Y " ~ S x  (so Yn'-1 =~¢n-1), and so a model f 
can be constructed with the property that, when restricted to Y',~_ 1, it equals the 
identity. We first show Im rtnf= V n. 

In order to prove the nontrivial inclusion, namely that of V n, we start with 
x e V n and consider the d.g.a, inclusion 
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~ = d ._1®aA An(x)  C-~ d ,  

which, by Sullivan, can be realized as the model of  a map between rational spaces 
g ' A o  ~ Z o .  Recalling the definition of V n and using again the Sullivan equivalence 
of categories we see that gofx ,0=poin t ,  for any ~, at the level of localizations. 
Denoting by Jo" A o ~ X o  the inclusion into the adjunction space obtained from A0 
by attaching cones over localized n-spheres, which just localizes j ,  we deduce the 
existence of an extension h of g over Xo" hjo = g. Passing back to minimal models, 
we have: x=~,(x)=fh"(x), so indeed: x ~ I m  nn~ 

Due to the cohomological properties of  j ,  the minimal model version of the rela- 
tive Hurewicz isomorphism theorem shows that nPf,  is an isomorphism for p <  n, 
and n" f ,  is an isomorphism onto V' .  In other words, we have a d.g.a, isomor- 
phism f , "  S~'~ Y,~. The lemma follows. 

Introducing a c-finiteness assumption on A, we can make more precise the conclu- 
sion of the lemma: 

2.3. Proposition. Suppose,  in addit ion to the conditions in L e m m a  2.2, that  c- 

dim A <_ n, and dn  is in normal f o r m .  Then the model  ~ x  is given by the canonical 

extension o f  W~ (as constructed in (2.1)) by C~, + 1, with c-dim < n + 1, where 

dim C~ + 1 = r -  cod V ~ (r stands f o r  the number  o f  (n + 1)-cells and cod V ~ is the 
codimension o f  V n in w n ) .  

Proof. Since, clearly, c -d imX_<n+ 1, Lemma 1.5 is available. We only have to 
check the dimension of C~, + 1. Relation (1.3) gives 

dim C~, ÷ 1 : -  dim H n + I X -  dim H n + l fn,  

and the cohomology exact sequence of the pair (X, A) gives 

dim H ~ + 1X = r -  (dim H ' A  - dim H n X ) ,  

which equals r -  (dim Hn~/n - dim HnYn).  Examining the exact sequences produced 
by elementary extension (compare [6, Lemma II.7]) 

O~  H n d .  - 1 ~ Hn~n ~ W"  "~ H n+ 1 5 ~  n _ 1 -~ H"  + l ~n ~ 0  

and 
0 ~ H ~ - ~ , -  1 ~ H ' Y ~  ~ V n ~ H  "+ 1~,_ 1 ~ H  ~+ l~r~ ~ 0  

we find that 

dim H n+ IW~ = (dim W n - dim V n) - (dim Hn~n - dim Hn~rn) 

which finally gives dim C~, ÷ 1 = r - cod V ". 

Proposition 2.3 gives the inductive step in the construction of the minimal model 
of a cell decomposition, which we will restate, for further notational use. 

Let X be a CW-complex, cohomologicaUy simply connected and of finite type. 
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Suppose we are given Am, n, an n-stage model in normal form of the n-skeleton x n :  

.~n,n = Az(WEn )®. . .®An(Wnn).  

We will also write C:, = (~CVn, where ~n is a minimal model, in normal form, 
which extends ~n,n. In order to pass to the (n + 1)-skeleton, we make the construc- 
t ion described in (2.1): 

~n+l,n = ~n,n-l®aAn(Wn+l),  

where Wnn+ 1 was previously called V n; this will provide an n-stage model for X n + 1, 
f ,n+l given by still in normal form. We now consider the vector space '- 'n+l, 

/-~n + 1 - -  cod Wnn+ 1 d i m  '-'n + 1 = rn + 1 

We then define 

wn+11-  [-'n +1(~ H n  + 2"~fn + n, 
- ~'-~n + l 1, 

observing that we have, by construction WnP+ 1 = Wn p for p < n, and we finally put: 

n + l  
.Un+l,n+l = ,Un+ I,n@dAn+ I(Wn+ I ) 

where dl  r'n+l~-n+l =0  and [dlHn+2y'n+l,n]. =id .  (2.4) 

2.5. Corollary. ~rn+ l,n+ 1 represents an (n + 1)-stage model in normal for  X n+ 1 

~rn+ l,n is an n-stage model f o r  X. I f  X is (n + 1)-dimensional, then the model o f  X 
pn  + 1 with c-dim < n + 1. is the canonical extension o f  ~n + 1, n, by "-'n + 1, 

In order to complete the statement in Proposition 2.3, we will show that, given 
A, any algebraic data (r and V n) can be realized by attaching (n+ 1)-cells to A: 

2.6. Proposition. Let A be simply connected and with finite type rational homology. 
Le t  Yn and ~¢n be f ixed n-stage models f o r  S n and A.  I f  V n is a subspace o f  nn~n 
and r is a number, r>_ cod V n, then there exist r attaching maps f~ : S n ~ A  such 
that vn= ~ Ker nnf~,n . 

P r o o f .  Since r_>cod V n, there exist r elements in W n*, say {La}, such that 
V n= ~ K e r L  x. We show now that, for a such given L, there is a map, f :  S n ~ A ,  

such that Ker L = Ker nnfn. We will use extensions of the given n-stage models, 
denoted by :7 and ~¢, and a localization 1 : A--,A0. We note that, by simply connec- 
tivity, we have an isomorphism 

1# ® i d  

n n ( A ) ® Q  , nn(Ao)®Q=nn(Ao)  

(see [6, Theorem 1.4D. The given L appears as nn~0, for some d.g.a, map ~0 : ~ - ~ : ,  
minimal model o f  go : sg-~no. This in turn gives rise to a map fo : S n-~no, with 
the property L = n"fo. At the homotopy groups level,  we  find a map f and a 
nonzero integer q such that l # ( [ f ] ) = q .  [ f o ] ,  which implies that lf=fofq where 
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f q : s n - ~ s  n is a rational homotopy equivalence. Passing to minimal models, we 
have Ker ztnfo = Ker ztnf, which finishes the proof. 

As a first application of  our construction, we give a rapid proof of the integral 
realization of a minimal  algebra in the finite c-dim case (see Theorem 10.2(ii) from 
[7]). 

2.7. Proposition. Let  ~g be minimal or  f ini te  type, and suppose c-dim ~g <_ n. Then 

there exists a f inite simply connected complex X,  with dim X < n ,  such that 

A/x=~/t.  

Proof .  The proof goes by induction. When passing to n + 1, let us note that ~g is 
isomorphic to the canonical extension of ~d n by C~ +l, with c-dim_< n + 1. We note 
tin_ 1 = ~//n-1, and then define d as the canonical extension of ~'n_ 1 by C~, with 
c-dim_< n. Let A realize ~'. We recall w n =  c n O ) H  n +1~//n_ 1. We may well suppose 
~d in normal form and write nnJl n - - C n @ K  with [d I K] an isomorphism onto its 
image. We define 

v n = c n o I m [ d ]  and r = c o d  V n + d i m C ~  +l 

Using 2.6, we realize V n and r, and obtain a finite complex X. 2.3 tells us that 2 /x  
is isomorphic to the canonical extension of  Arn by C,~ +1 , with c-dim_< n + 1, where 
dim C~ + 1 = r -  cod gn = dim C~ + 1. A little analysis of the construction of ~'~ and 
Yn shows X n to be isomorphic to ~ ,  so indeed ~gx = ~g- 

2.8. Remark. Let us say that a complex X is rationally structured if  the inclusion 
of any skeleton, x m ~ x  re+l, induces rational homology isomorphism in all dimen- 

sions p_< m. With this definition let us note that our proof gives a little more, 
namely: supposing, inductively, the existence of a rationally structured realization, 
we can easily check the condition for X, when m = n, p = n, by simply estimating 
with relations (1.3): 

dim HnA = dim Hn~,~ = dim C n + dim Hn~n_ 1, 

dim H n x  = dim Hnw,, = dim C n + dim Hn~n_ 1. 

2.9. Remark. The condition of being rationally structured seems to be adequate for 
rational homotopy purposes, since it guarantees that the rational homotopy type of 
skeleta are rational homotopy type invariants of  the complex, and even the number 
of cells in each dimension, facts which are definitely false for arbitrary complexes, 
as shown by simple examples. 

3. The formality test for cellular structures 

Our starting point will be the following lemma, which slightly improves a result 
of Sullivan (see the examples of formal spaces in [7, §12]): 
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3.1. L e m m a .  Let  A be cohomologically s imply connected, and suppose c- 

dim A <_ n + 1. Given a map j : A--* X,  which induces rational cohomology isomor- 

phism in dimensions p < n and a monomorphism in dimension p = n, i f  X is formal ,  

then A is formal .  

maps  induced by j ,  we 

~ -  1 : ~ n -  1 ~ H * A ,  with 
stage models ,  using (1.1) 

dim C n = dim 

and 

Proof. Let q~ : ~/t--, #x be a model.  Since X is fo rmal ,  there exists ~u : ~ - - , H * X  such 
that  ~v*= (p*. Restricting these models to ~ _  1 and  composing with the obvious 

obtain ~Pn- 1 : "//n- 1 -~ #A, an (n - 1)-stage model,  and 
the proper ty  * * Vn- 1 = ~Pn- 1. When extending these (n - 1)- 
we observe that  

HnA - dim Hn~n_ 1 

K n = Ker H n + l(on_ 1 = Ker H n + 1 ~Un- 1, 

so we have  a c o m m o n  n-stage model for #A and  H ' A ,  say ~,~. Given a c o m m o n  
p-stage model ,  J/p,  p>_n, the same argument  shows that, due to the hypothesis of  

c-dim A < n + 1, it can be extended to a common  ~ p +  1- 

3.2. Corol lary .  The connected sum o f  two cohomologically simply connected 

manifolds which are formal  spaces, is again formal .  

Proof .  Let M and M '  be (n + 1)-dimensional. Their  connected sum, M # M ' ,  with 
a (n + 1)-cell a t tached,  has the homotopy  type o f  the connected sum (with base 
points) M v M ' ,  which is known to be formal.  We  can now apply L e m m a  3.1. 

We go back  to the situation described in Propos i t ion  2.3, and add  a few nota- 

tions: (dA) will s tand for the composed map 

W n [dA] , H n + l ~ n _ l . . . ~ H n + l d n _ l / D H n + l ~ n _ l  

(where D denotes the decomposable elements), and  (dx)  will s tand for  the restric- 
t ion (dA) I Vn. We first check the obstruction to formali ty described in L e m m a  1.8. 

3.3. Lemma. Suppose further that H*A is spherically generated. Then H*X is 
spherically generated i f f  (dx}  is onto. 

Proof .  Extending  the n-stage model  in normal  f o r m  ~r n produced by L e m m a  2.2, 
to a model  o f  X,  say :~, still in normal  form, it is easy to see, using (1.3), that  the 
hypothesis  on X implies H n + l~r n = D H  n + l~  n. Examining  the exact sequence 

Idxl 
V" , H,,+ 1~,,_ 1 ~ H"+ l~,~ ~ 0 ,  

w e  can immediate ly  conclude that  (dx)  is onto .  Conversely, the surjectivity of 
(dx)  implies tha t  H n +l£r n = D H  n + l£rn. We note tha t ,  due to the c-dim assumption,  
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it will be sufficient to show that HP,~Pn is generated by [C~r.], for p _  n + 1. H*A 
being spherically generated, HP, a¢ n will be generated by [ C j ,  for p_< n. Recalling 
the construction of Y'~ and using again (1.3), this implies the desired assertion for 
S, ,  for p <_ n. The elements in H n ÷ IY n being decomposable, H * X  results spheri- 
cally generated. 

We are ready to prove the main result of this section, which gives the characteriza- 
tion of the formality of a space X, obtained by attaching cells to A, in terms of A 
and of the attaching maps. 

3.4. Theorem. Let A be cohomologically simply connected, with finite type rational 

homology, and with c-dim A _ n, n > 1. Let X be obtained f rom A, by finitely at- 
taching (n + 1)-cells. 

Start with ~ . ,  an n-stage model  for  A in normal form.  Write ~ . =  

~¢n-lQ aA An(W"),  and construct a subspace V"C W" using the models o f  the at- 
taching maps, as explained at the beginning o f  Section 2. 

Then, the formali ty  o f  X is equivalent to the fol lowing conditions on ~¢. and vn: 
(I) The composition 

W n 
[aal 

, H" + a~._  I -*Hn + ls¢._ I/DHn + l d . _  I 

is onto. when restricted to V". 

(II) There exists a d.g.a, map Qn_l : ~ . _ l ~ H * s ~ . _ l  with HPQ._I =id f o r  p<_n, 
and such that H "+ 1~ n_ 1 leaves the subspace [dA](V n) invariant. 

Proof. We show first that the formality of X implies condition (II), condition (I) 
being immediate, with Lemmas 1.8, 3.1 and 3.3. We extend 5rn to a model of X, 
say 5C, and we have, by formality, a d.g.a, map v/: Y ~ H * Y ,  such that ~u* = id. We 
consider the restrictions of ~,, denoted by 

IP'n @.- 1 
$5. ' H*~r. and ~.- 1 ~ H*~Cn- 1" 

Denoting by K the inclusion ~¢n-1 c-" ~n, we note that we have K*Q._ 1= ~unK, and 
deduce that nn+lQ._  1 leaves K e r H " + I K  invariant. Looking at the cohomology 
exact sequence of the elementary extension K : ~¢._ 1 c_, 6rn, we see that 

Ker H " + I K =  IdAI( V" ). 

Conversely, let (I) and (II) be satisfied. Using Lemma 1.6, it will be sufficient to 
onstruct a d.g.a, map ~u.: ~rn~H*Yn,  such that HP~n=id  for p<_n+l .  We 

denote by ~u._ 1 : ~ . -  1 --,H*W., the composition K*O._ 1- Condition (II) says that 
! 

H n + 1 ~ ,  _ 1 o [dx] = 0, therefore there exists an extension of ~ . -  1 over ~rn, say ~.- 
We can modify ~u~,[ V" and obtain a new extension, ~u., which in addition satisfies 
~*l [C7.] = id. Condition (II) also shows A to be formal, hence, by Lemma 3.3, 
condition (I) implies that H * X  is spherically generated, therefore HPW. is 
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generated by [C:r,], for p _  n + 1; by construction ~,* I tcgo] = id, for any p, which 
shows HPc/n=id for p<_n+ 1, as asserted. 

3.5. Remark. Let X be a finite complex, cohomologically simply connected. 
Theorem 3.4, combined with the construction described in the previous section (see 
Corollary 2.5), provides a finite test for the formality of  X. We point out that one 
can produce simple examples which show that the conditions (I) and (II) in Theorem 
3.4 cannot be relaxed. Unfortunately, the examples also show that condition (II) 
depends on the choice of Qn-1- 

3.6. Corollary. Let  X be a finite complex, cohomologically simply connected. Con- 
sider a model o f  its cellular decomposition, inductively constructed as in Corollary 
2.5. I f  we have 

Wn n = Wnn+ l + Cn (up to dim X -  1), 

then X is formal.  

Proof. In order to apply Theorem 3.4, we will put X n = A ,  X n + I = X ,  and induc- 
tively suppose that A is formal. Working with the noations used in Theorem 3.4, 
we write the exact sequence 

[dA] 
w n  ~ Hn + ldn-  1 ~ H n  + Idn, 

we deduce that [dA] is onto, and we observe that the hypothesis Wn= V~+ C~, 
implies that Im[dA] = Im[dx], hence (dx )  is onto, which proves condition (I). 

The formality of A implies the existence of a d.g.a, map ~o n_ 1 : ~¢n- 1 ~H*~ 'n_  z, 
such that HP~%_ 1 = id for p_< n. It is now clear that (II) is also satisfied, since any 
such map leaves [dA](V ~) = H  ~+ 1~¢_ I invariant. 

3.7. Remark. The algebraic condition Wn n = wn+l+  Cn n corresponds to requiring 
the attaching map vf~ : v S  n ~ X  n to be formal. 

Instead of  imposing conditions on the attaching maps, in order to obtain for- 
mality, we will now fix A, a formal space, cohomologieaUy simply connected and 
with finitely dimensional rational homology, and an integer n, n > c-dim A. We will 
give two kinds of  conditions on A, related to the question of the formality of the 
spaces X, obtained by finitely attaching (n + 1)-cells to A.  

3.8. Lemma. L e t  A,  X ,  be  as above. 
(i) I f  D H  n + ls1 n_ 1 = Hn + 1sin- 1, then any subspace V n C W n satisfies conditions 

(I) and (II) in Theorem 3.4. Therefore any adjunction space X is formal. 
(ii) I f  D H  n+ lsdn_ 1=0 and C~=O, then the only subspace VnC W n which 

satisfies conditions (I) and (II) is Vn = W n. 
Therefore the only adjunction spaces X which are formal  are those which have 
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the rational h o m o t o p y  type o f  the connected sum o f  A with a f in i te  bouquet  o f  

spheres: A v ( v S  ~+ 1). 

Proof. (i) Condition (I) is trivially verified. The formality of A produces 
pn_l :~Cn_l - - 'H*~n_l ,  such that HPQn_l=id  for p < n .  Since Hn+lsln_l  = 
D H  n+ l~n-  l, it follows that H n+ I Qn_ 1 = id, which proves condition (II). 

(ii) The assumptions made give an isomorphism 

<aA> W n ) Hn  + 1"acn- 1 = Hn  + IJ~n- 1/DHn + lsgn- 1" 

If V n satisfies condition (I), it follows that Vn= W n. 

Lemma 3.8(ii) suggests that the formality condition is in general a very restrictive 
one, in the following precise sense: 

3.9. Proposition. I f  A is a fo rmal  space, cohomologically s imply  connected and with 

f inite-dimensional rational homology,  then there exists an integer hA, nA > c-dim A, 
such that f o r  any n >_ hA, the only spaces X,  obtained f r o m  A by f ini tely  attaching 
(n + 1)-cells, which are formal ,  are those o f  the rational h o m o t o p y  type o f  a con- 
nected sum: A V ( V S  n+ 1). 

Proof. Let ~¢ be a model for A,  in normal form. It clearly suffices to show that, 
for n > n a ,  the conditions (ii) in Lemma 3.8 are satisfied. We will denote by c 
the number c-dim A, and by g the maximum positive dimension s for which 
HSA/DHSA :#0. We then take nA = c + g .  The formality of A implies that H*~¢ is 
spherically generated (see Lemma 1.8). This in turn is used to prove in a standard 
way that the natural projection C~--*H+st/DH%¢, is an isomorphism. We deduce 
that, for n > g ,  we have C], = C~ = 0. In order to finish the proof, we suppose 
n >_ n a,  and show D H  n + 1~¢ n_ l = O. Start with a ~ D H  n + 1 ~  n_  1" H ' s t  being 
spherically generated, the image of a in a n + 1~¢ will equal the cohomology class of  
an element of  the form a =  ~ zjbj,  where z j e C ~  and b j e A + ( C # ) .  With a little 
more care, we can even write a = ~ [zj] [by] in H*~n_  1. Since deg zj <-g for any j ,  
we have that deg bj > c-dim ~¢ for any j ,  hence [by] = 0 in H*~Cn_ 1 for any j ,  which 
finally shows a = O. 

4. Decompositions with minimum number of cells 

Let X be a complex, simply connected and of finite type. Examining the exact 
homotopy sequence of  the pair (X n+ 1, Xn), one can easily deduce the inequality 

rk rt n + 1 ( X n  + l, X n) > rk rtn ( X  n) - rk nn ( X  n + 1 ). 

Starting from this simple observation, we were led to make the following definition: 
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4.1. Definition. If X is a complex, denote by k the smallest positive integer s with 
the property that the s-skeleton is not reduced to a single point. The complex X is 
economically structured if, for any n >_ k, we have 

number of (n + 1)-cells = rk rtn(X n) - rk rtn(xn+l). (4.2) 

For a fixed n, condition (4.2) says that, in passing from X n to X, the rank of 
nn(X) is realized without waste of (n + 1)-cells. From this point of view, the com- 
plexes we introduced should be considered as the simplest cellular structures, namely 
those for which, ignoring torsion, the system of the homotopy groups is constructed 
with a minimum number of cells. 

The use of the results of  Section 2 gives the following characterization: 

4.3. Proposition. X is economically structured i f f  we have 

C s, = C~, f o r  any n, 

where Ar n is any model o f  X n, in normal form,  and k is as in the previous 

definition. 

Proof.  The first non-trivial skeleton is X k = V S  k. We start with Ark, k =Ak(W~), 
with zero differential, which represents a k-stage model in normal form of X t. We 
use construction (2.4) to obtain, for any n_> k, an n-stage model in normal form of 
X n, denoted by ~n,n. We then extend these models to models in normal form: 
3£ n =A(Wn). We observe now that the condition in the proposition trivially holds 
for n < k ,  and that (4.2) is equivalent, for n>_k, to  rn+l = d i m  Wnn-dim Wnn+ 1, in 
(2.4) notations Proposition 2.3 shows that X is economically structured iff  ,-,n + 1 ~-'n + 1 = 0  

for n _ k. After these preliminaries, we will inductively prove the direct implication, 
which is the non-trivial one. Since c-dim X k <  k, we deduce from construction (1.1) 
that C p = 0 for p > k; the fact that C~ = 0 for p < k, immediately follows, by look- 
ing at Ar~,e. Suppose Cn = C~ for n >k .  By a similar c-dim argument, we have 
Cff÷ 1 = 0 for p > n + 1, and also for p = n + 1, by hypothesis. By construction, 
C,~+ IC C~ and Cff+ 1 = Cff for p < n  (see (2.4)), which closes the induction, and the 

proof. 

We are naturally led to introduce the following property, which depends only on 
the rational homotopy type: 

4.4. Definition. Let X be a space, cohomologically simply connected and with finite 
type rational homology. We will say that X is economic (as a rational homotopy 
type) if  its rational homotopy type contains an economically structured complex. 

This property has the following simple characterization: 

4.5. Theorem. Let X be a space, cohomologically simply connected and with finite- 
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dimensional rational homology. X is economic i f f  there exists an integer k such that 
C~ = C~, ~¢t being any model o f  X, in normal form. 

Proof. For the direct implication, it visibly suffices to prove the claim for X 
economically structured. Choose k as in Proposition 4.3. For any n we will have, 
according to Corollary 2.5, C~ n = Cs,÷,, and the conclusion follows from Proposi- 
tion 4.3. For the other implication, it will be sufficient to prove the following asser- 
tion: if an integer n_> k is chosen, such that c-dim ~/_< n, then there exists a finite 
complex, (k-1)-connected, at most n-dimensional, and economically structured 
which has ~ as a minimal model. The assertion is a replica of Proposition 2.7, and 
the proof also goes paralleUy, with the following changes: the induction starts with 
n=k,  and we can take X = v S  ~. For the inductive step, we observe that, if 
C1~ = C k = • .~, then C~ C~, and that the complex X, constructed as in Proposition 
2.7, will be economically structured iff r=cod Vn; since by that construction, 
r-cod V n = dim C~ + 1, and since n >_ k, the hypothesis in our theorem helps to finish 
the proof. 

4.6. Definition. Let X be a space. H * X  is homogenously generated if there exists 
an integer 1 with the property that t t t X  generates H * X  as an algebra. 

The characterization in Theorem 4.5 takes a particularly simple form, when a 
formality-like assumption is added: 

4.7. Corollary. Let X be as in Theorem 4.5 and suppose further that H * X  is 
spherically generated. Then X is economic i f f  H * X  is homogeneously generated. 

Proof. We notice the following general facts, omitting the proofs, since they are 
standard: if ~ is a minimal algebra, and if H*~¢¢ is generated by H ~ ,  then 
C~ = Ct~, and H*~¢¢ is spherically generated. On the other hand, if Cx¢ = C I~, and 
H*~ is spherically generated, ~¢ being in normal form, then H~/¢ generates H*~¢¢. 

Taking into account the criterion of Theorem 4.5, the corollary follows. 

4.8. Remarks. The previous proof also shows that the inverse implication is valid 
without any additional assumptions. On the other hand, there are examples which 
show that the direct implication no longer holds, if the spherical generation 
hypothesis on X is dropped. 

In the proof of Corollary 4.7 we also noticed that, if H * X  is homogeneously 
generated, then H * X  is spherically generated. The following example shows that the 
property of homogeneous generation is not strong enough to ensure the formality. 
The example also illustrates the utility of the cellular formality criterion given in 
Section 3. 

4.9. Example. We will use the notations of Theorem 3.4, and take A =p2cvP3C 
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and n = 7. Since A is formal, it will be sufficient to construct a 7-model in normal 
form: ct 7 • d 7 -'-~H*A. H*A is generated by elements a* and b*, deg a*= deg b*--2, 
with the relations a 'a=0,  b*4=0, and a ' b * = 0 .  We describe the required 7-stage 
model, constructed by the algorithm (1.1): 

W 2" generated by a and b, with da=db=O, and aTa=a*, aTb=b*; 
W3: generated by x, with dx=ab, and a7X=0; 
Ws: generated by y, with d y = a  3, and a7Y=0; 
W6: generated by z, with dz = by -a2x ,  and ct7z= 0; 
W7: generated by u and o, with du=az-xy, do=b 4, and a7U=t~70=0. 

Taking as subspace V 7, the subspace spanned by u + o, and r =  cod V7= 1, we 
denote by X the space obtained by attaching one 8-cell to A, which realizes these 
algebraic data (see Proposition 2.6). We remark that A is economically structured, 
therefore, by construction, X will be economically structured. We will now show 
that V 7 satisfies condition (I) of Theorem 3.4, but not condition (II). It will follow, 
from Lemma 3.3, that H*X is spherically generated, hence, by Corollary 4.7, H*X 
is homogenously generated. By Theorem 3.4, X is not formal. 

Since H8~¢6 is spanned by the classes [du] and [do], and DHSs~'6 is spanned by 
[do], condition (I) immediately follows. The d.g.a, maps ~)6" ~'6-'H*~/6, with the 
property HPQ6 =id for p < 7 ,  are given by o6a= [a], Q6 b = [b], LO6X=0, ~6Y =0, and 
Q6z=m[b3], with a parameter m eQ. It is equally immediate to see that, for any 
value of m, HsQ6 does not leave [dA](V 7) invariant. 

4.10. Remarks. By contrast with the previous example one can still infer the 
formality from additional hypotheses. 

Let H*X be generated by H 1, and with cup-length c. If l_> c, then X is formal 
(using the obstructions to formality developed in [5]). If l >_ c -  1 and I t*X satisfies 
Poincar6 duality, then X is formal (using [8]). For details, see [9]. 
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